

Cambridge IGCSE[™]

CHEMISTRY 0620/02

Paper 2 Multiple Choice (Extended)

For examination from 2023

SPECIMEN PAPER 45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

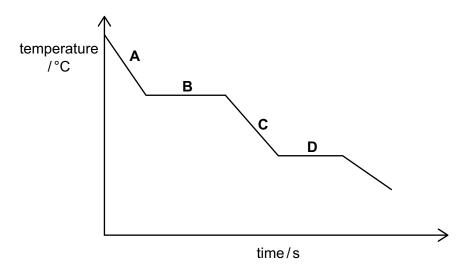
Soft clean eraser

Soft pencil (type B or HB is recommended)

INSTRUCTIONS

There are forty questions on this paper. Answer all questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.


INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 A gaseous substance is slowly cooled and the temperature recorded every second.

The results are shown on the graph.

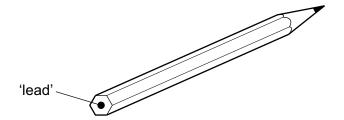
At which point is the substance a solid?

2 A gas is released at point Q, in the apparatus shown.

Which gas changes the colour of the damp universal indicator paper most quickly?

	gas	relative molecular mass
Α	ammonia	17
В	carbon dioxide	44
С	chlorine	71
D	hydrogen	2

3 Which statement describes the bonding in sodium chloride?


A A shared pair of electrons between two atoms leading to a noble gas configuration.

B A strong force of attraction between oppositely charged ions.

C A strong force of attraction between two molecules.

D A weak force of attraction between oppositely charged ions.

4 The 'lead' in a pencil is made of a mixture of graphite and clay.

When the percentage of graphite is increased, the pencil moves across the paper more easily.

Which statement explains this observation?

- A Graphite has a high melting point.
- **B** Graphite is a form of carbon.
- **C** Graphite is a lubricant.
- **D** Graphite is a non-metal.
- **5** Which statement about metals is **not** correct?
 - **A** They conduct electricity because delocalised electrons can move throughout the metal.
 - **B** They consist of layers of atoms that can slide over each other.
 - **C** They have a giant lattice of oppositely charged ions in a 'sea' of delocalised electrons.
 - **D** They have a giant lattice of positive ions in a 'sea' of delocalised electrons.
- **6** Aqueous iron(III) sulfate and aqueous sodium hydroxide react to give a precipitate of iron(III) hydroxide and a solution of sodium sulfate.

What is the balanced symbol equation for this reaction?

A
$$Fe_2(SO_4)_3(aq) + 2NaOH(aq) \rightarrow Fe(OH)_3(s) + Na_2SO_4(aq)$$

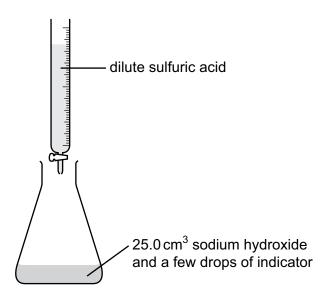
B
$$Fe_2(SO_4)_3(aq) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + 3Na_2SO_4(aq)$$

$$\mathbf{C}$$
 Fe₂(SO₄)₃(aq) + 6NaOH(aq) \rightarrow 2Fe(OH)₃(s) + 3Na₂SO₄(aq)

$$\mathbf{D} \quad 2 \operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3}(\operatorname{aq}) + 6 \operatorname{NaOH}(\operatorname{aq}) \rightarrow 4 \operatorname{Fe}(\operatorname{OH})_{3}(\operatorname{s}) + 6 \operatorname{Na}_{2} \operatorname{SO}_{4}(\operatorname{aq})$$

- 7 Which information is needed to calculate the relative atomic mass of an element?
 - **A** The total number of protons and neutrons in the most abundant isotope.
 - **B** The nucleon numbers and the total number of isotopes.
 - **C** The mass number and abundance of each of its isotopes.
 - **D** The atomic number and abundance of each of its isotopes.

The equation for the reaction between sodium carbonate and excess dilute hydrochloric acid is 8 shown.


$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$$

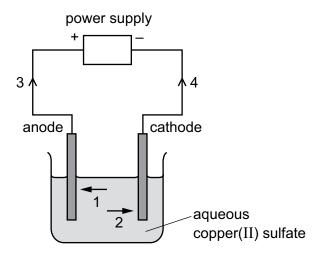
When 26.5 g of sodium carbonate reacts with excess dilute hydrochloric acid, what is the maximum volume of carbon dioxide produced?

- 6dm³
- **B** $12 \, \text{dm}^3$ **C** $18 \, \text{dm}^3$ **D** $24 \, \text{dm}^3$

A volumetric pipette is used to measure 25.0 cm³ of 2.0 mol/dm³ aqueous sodium hydroxide into a 9 conical flask.

A burette is filled with dilute sulfuric acid.

The equation for the reaction is shown.

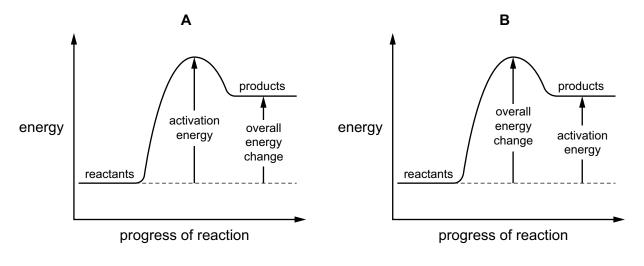

$$2NaOH + H2SO4 \rightarrow Na2SO4 + 2H2O$$

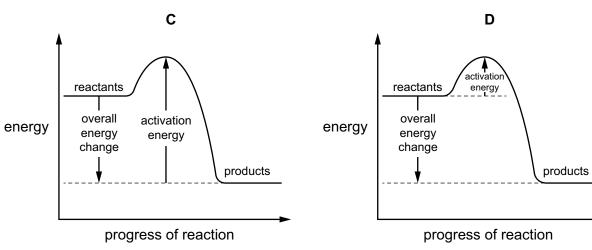
The reaction requires 50.0 cm³ of dilute sulfuric acid to reach the end-point.

What is the concentration of the dilute sulfuric acid in mol/dm³?

- $0.50\,\mathrm{mol/dm^3}$
- $1.0 \, \text{mol/dm}^3$ В
- $2.0\,\mathrm{mol/dm^3}$ C
- $4.0 \, \text{mol/dm}^3$ D

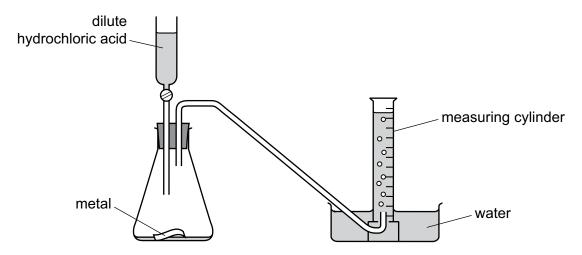
10 The diagram shows a circuit used to electrolyse aqueous copper(Π) sulfate.


Which arrows indicate the movement of the copper ions in the electrolyte and of the electrons in the external circuit?


	copper ions	electrons
Α	1	3
В	1	4
С	2	3
D	2	4

11 Which row shows the waste products released from the exhaust of a vehicle powered using a hydrogen—oxygen fuel cell?

	carbon dioxide	oxides of nitrogen	water
Α	✓	✓	✓
В	×	✓	✓
С	✓	×	×
D	×	×	✓


12 Which diagram is a correctly labelled reaction pathway diagram for an endothermic reaction?

- 13 Which changes are physical changes?
 - 1 melting ice to form water
 - 2 burning hydrogen to form water
 - 3 adding sodium to water
 - 4 boiling water to form steam
 - **A** 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4

14 The diagram shows an experiment to measure the rate of a chemical reaction.

Which change decreases the rate of reaction?

- A adding water to the flask
- **B** heating the flask during the reaction
- C using more concentrated acid
- D using powdered metal
- 15 Which row describes the effect of increasing concentration and increasing temperature on the collisions between reacting particles?

	increasing concentration	increasing temperature
A	more collisions per second only	more collisions per second only
В	more collisions per second only	more collisions per second and more collisions with sufficient energy to react
С	more collisions per second and more collisions with sufficient energy to react	more collisions per second only
D	more collisions per second and more collisions with sufficient energy to react	more collisions per second and more collisions with sufficient energy to react

16 Methanol is prepared by the reversible reaction shown.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

The forward reaction is exothermic.

Which conditions produce the highest equilibrium yield of methanol?

	temperature	pressure
Α	high	high
В	high	low
С	low	high
D	low	low

17 When chlorine gas dissolves in water a reaction occurs.

$$Cl_2 + H_2O \rightarrow HCl + HClO$$

Which row of the table identifies the oxidation number for chlorine in the chlorine-containing species?

	Cl ₂	HC1	HC <i>1</i> O
Α	-1	-1	-1
В	0	-1	-1
С	-1	+1	+1
D	0	-1	+1

18 Four different solutions, J, K, L and M, are tested with universal indicator.

solution	J	K	L	М
colour with universal indicator	green	red	purple	orange

Which solutions are acidic?

A J and M B K and M C K only D L only

19 Which solution has the lowest pH?

A 0.1 mol/dm³ ammonia solution

B 0.1 mol/dm³ ethanoic acid

C 0.1mol/dm³ hydrochloric acid

D 0.1 mol/dm³ lithium hydroxide

20 Magnesium, calcium, strontium and barium are Group II elements.

Group II elements follow the same trends in reactivity as Group I elements.

Which statements about Group II elements are correct?

- 1 Calcium reacts faster than magnesium with water.
- 2 Barium reacts less vigorously than magnesium with dilute acid.
- 3 Strontium oxidises in air more slowly than barium.
- **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only
- 21 Chlorine, bromine and iodine are elements in Group VII of the Periodic Table.

Which statement about these elements is correct?

- **A** The colour gets lighter down the group.
- **B** The density decreases down the group.
- **C** They are all gases at room temperature and pressure.
- **D** They are all non-metals.
- 22 Which row describes the properties of a typical transition element?

	melting point	variable oxidation number	can act as a catalyst
Α	high	no	no
В	high	yes	yes
С	low	no	yes
D	low	yes	no

- **23** Which statement about the noble gases is correct?
 - A Noble gases are diatomic molecules.
 - **B** Noble gases are reactive gases.
 - C Noble gases have full outer electron shells.
 - **D** The noble gases are found on the left-hand side of the Periodic Table.

- 24 What is a property of all metals?
 - A conducts electricity
 - **B** hard
 - C low melting point
 - **D** reacts with water
- 25 Which statement explains why aluminium is used in the manufacture of aircraft?
 - A It conducts heat well.
 - B It has a low density.
 - **C** It is a good insulator.
 - **D** It is easy to recycle.
- 26 The section of the reactivity series shown includes a newly discovered metal, symbol X.

Ca

Mg

Fe

Χ

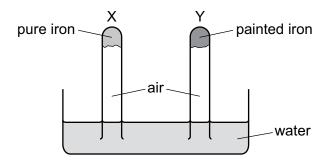
Η

Cu

The only oxide of X has the formula XO.

Which equation shows a reaction which occurs?

$$\textbf{A} \quad \text{Cu(s)} \ + \ X^{2^+}(\text{aq}) \ \rightarrow \ \text{Cu}^{2^+}(\text{aq}) \ + \ X(\text{s})$$


B
$$2X(s) + Cu^{2+}(aq) \rightarrow 2X^{+}(aq) + Cu(s)$$

$$\mathbf{C}$$
 X(s) + Fe₂O₃(s) \rightarrow 2Fe(s) + 3XO(s)

$$\textbf{D} \quad \text{X(s)} \, + \, 2 \text{HC} l \, (\text{aq}) \, \rightarrow \, \text{XC} \, l_2(\text{aq}) \, + \, \text{H}_2(\text{g})$$

- 27 Which metal compound produces a gas that turns limewater milky when it is heated with a Bunsen burner?
 - A copper(II) carbonate
 - B magnesium nitrate
 - C sodium sulfate
 - **D** zinc nitrate

- 28 Which statement about the extraction of iron in a blast furnace is correct?
 - A Calcium oxide reacts with basic impurities.
 - **B** Carbon is burnt to provide heat.
 - **C** Iron(III) oxide is reduced to iron by carbon dioxide.
 - **D** The raw materials are bauxite, limestone and coke.
- **29** An experiment to investigate the effect of painting iron is shown.

The experiment is left for seven days.

What happens to the water level in test-tubes X and Y?

	test-tube X	test-tube Y
Α	falls	rises
В	no change	no change
С	rises	falls
D	rises	no change

30 Bauxite contains aluminium oxide.

Aluminium is extracted from aluminium oxide by electrolysis.

Which statement is a reason for why cryolite is added to the electrolytic cell used to extract aluminium?

- **A** Cryolite decreases the rate at which aluminium ions are discharged.
- **B** Cryolite lowers the melting point of the electrolyte mixture.
- **C** Cryolite prevents the carbon anodes being burned away.
- **D** Cryolite removes impurities from the bauxite.

- 31 Which statement is correct?
 - **A** Atmospheric carbon dioxide is not a cause of climate change.
 - **B** Atmospheric methane is produced by respiration.
 - **C** Burning natural gas decreases the level of carbon dioxide in the atmosphere.
 - **D** Decomposition of vegetation causes an increase in atmospheric methane.
- 32 A plastic combusts to form sulfur dioxide, SO_2 and hydrogen chloride, HCl

How could both gases be removed from the air?

- A pass the gases over solid anhydrous cobalt(II) chloride
- **B** pass the gases over solid damp calcium oxide
- **C** pass the gases through a catalytic converter
- **D** pass the gases through filter paper
- 33 Which equation represents photosynthesis?
 - **A** $C_6H_{12}O_6 + 3O_2 \rightarrow 3CO_2 + 3H_2O$
 - **B** $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$
 - $C \quad 3CO_2 + 3H_2O \rightarrow C_6H_{12}O_6 + 3O_2$
 - $\mathbf{D} \quad 6\text{CO}_2 \ + \ 6\text{H}_2\text{O} \ \rightarrow \ \text{C}_6\text{H}_{12}\text{O}_6 \ + \ 6\text{O}_2$
- **34** Which statement defines structural isomers?
 - **A** They are compounds with the same displayed formula but a different molecular formula.
 - **B** They are compounds with the same molecular and displayed formulae but a different structural formula.
 - **C** They are compounds with the same molecular formula but a different structural formula.
 - **D** They are compounds with the same structural formula but a different displayed formula.
- **35** Petroleum is a mixture of different hydrocarbons.

Which process is used to separate the petroleum into groups of similar hydrocarbons?

- **A** combustion
- **B** cracking
- C fractional distillation
- **D** reduction

36 Which equation representing a reaction of methane is correct?

A
$$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$$

$$\mathbf{B} \quad \mathsf{CH_4} \, + \, \mathsf{C} l_2 \, \rightarrow \, \mathsf{CH_4} \mathsf{C} l_2$$

$$\mathbf{C} \quad \mathrm{CH_4} \, + \, \mathrm{C} \, l_2 \, \rightarrow \, \mathrm{CH_2C} \, l_2 \, + \, \mathrm{H_2}$$

$$\mathbf{D} \quad 2\mathrm{CH_4} \, + \, 2\mathrm{C} \, l_2 \, \rightarrow \, 2\mathrm{CH_3C} \, l \, + \, \mathrm{C} \, l_2 \, + \, \mathrm{H_2}$$

37 Ethanol can be produced by fermentation or by the catalytic addition of steam to ethene.

Which row shows an advantage and a disadvantage for each process?

	ferme	ntation	catalytic addition of steam to ethene			
	advantage	disadvantage	advantage	disadvantage		
A	batch process	slow reaction	continuous process	fast reaction		
В	fast reaction	continuous process	pure ethanol formed	renewable raw material		
С	renewable raw material	batch process	pure ethanol formed	slow reaction		
D	renewable raw material	impure ethanol formed	fast reaction	finite raw material		

38 Part of the structure of a polymer is shown.

Which monomer is used to make this polymer?

- **39** Five steps in an acid–base titration are shown.
 - 1 Slowly add the acid from a burette into a conical flask until the indicator becomes colourless.
 - 2 Add thymolphthalein.
 - 3 Use a volumetric pipette to add a fixed volume of alkali to a conical flask.
 - 4 Read and record the initial volume of acid in the burette.
 - 5 Read and record the final volume of acid in the burette.

What is the correct order of these steps to complete an acid-base titration?

- $\mathbf{A} \quad 2 \rightarrow 4 \rightarrow 1 \rightarrow 5 \rightarrow 3$
- $\textbf{B} \quad 3 \rightarrow 2 \rightarrow 4 \rightarrow 1 \rightarrow 5$
- $\textbf{C} \quad 3 \rightarrow 4 \rightarrow 1 \rightarrow 5 \rightarrow 2$
- $\textbf{D} \quad 4 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 5$
- **40** A student does paper chromatography on a mixture of amino acids.

The student sprays the dried chromatogram with a locating agent.

What is the function of the locating agent?

- A to dissolve the amino acids
- **B** to form coloured spots with the amino acids
- **C** to preserve the amino acids
- **D** to stop the amino acids reacting

The Periodic Table of Elements

	=		Φ	Ę		Ф	no C	3	_	on C			ton		Φ	о Т	3	L	Б.	8	D	uoss	
		2	Í	helii 4	7	Ź	DG N	1	⋖	argon 40	* *		Arya 8	75	×	xen 13	88	<u>~</u>	rad	1	Ó	ogane	-
					6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	н	iodine 127	82	¥	astatine -	117	<u>s</u>	tennes sine -	
	5				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	polonium –	116	۲	livermorium -	
	>				7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	. <u>.</u>	bismuth 209	115	Mc	moscovium -	
	2				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	В	lead 207	114	Εl	flerovium	
					2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	п	indium 115	81	<i>1</i> 1	thallium 204	113	£	nihonium -	
											30	Zu	zinc 65	48	පි	cadmium 112	80	Нg	mercury 201	112	5	copemicium	
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -	
dn											28	z	nickel 59	46	Pd	palladium 106	78	₽	platinum 195	110	Ds	darmstadtium -	
Group											27	රි	cobalt 59	45	몬	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -	
		-	I	hydrogen 1							26	Ь	iron 56	44	R	ruthenium 101	92	SO	osmium 190	108	£	hassium	
					J						25	M	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	В	bohrium	
						Г	ss				24	ပ်	chromium 52	42	Мо	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -	
				Key	atomic number	atomic symbol	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>а</u>	tantalum 181	105	Ор	dubnium	
					Ö	ator	relat				22	j=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	弘	rutherfordium -	
					L			ı			21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids		
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium -	-
	-				3	:=	lithium 7	1	Na	sodium 23	19	メ	potassium 39	37	&	rubidium 85	55	S	caesium 133	87	ъ	francium -	-

71	3	lutetium 175	103	ئ	lawrencium -
70	Υp	ytterbium 173	102	8	nobelium –
69	E	thulium 169	101	Md	mendelevium -
89	Щ	erbium 167	100	Fm	fermium -
29	웃	holmium 165	66	Es	einsteinium –
99	Ò	dysprosium 163	86	ర	califomium -
99	Tp	terbium 159	26	番	berkelium -
64	р	gadolinium 157	96	CB	curium -
63	En	europium 152	92	Am	americium -
62	Sm	samarium 150	94	Pu	plutonium –
61	Pm	promethium —	93	Ν d	neptunium -
09	PZ	neodymium 144	92	\supset	uranium 238
69	Ā	praseodymium 141	91	Ра	protactinium 231
58	Se	cerium 140	06	ᆮ	thorium 232
22	Гa	lanthanum 139	88	Ac	actinium -

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.